ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Andreas Ikonomopoulos, Lefteri H. Tsoukalas, Robert E. Uhrig
Nuclear Technology | Volume 104 | Number 1 | October 1993 | Pages 1-12
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34866
Articles are hosted by Taylor and Francis Online.
A novel approach is described for measuring variables with operational significance in a complex system such as a nuclear reactor. The methodology is based on the integration of artificial neural networks with fuzzy reasoning. Neural networks are used to map dynamic time series to a set of user-defined linguistic labels called fuzzy values. The process takes place in a manner analogous to that of measurement. Hence, the entire procedure is referred to as virtual measurement and its software implementation as a virtual measuring device. An optimization algorithm based on information criteria and fuzzy algebra augments the process and assists in the identification of different states of the monitored parameter. The proposed technique is applied for monitoring parameters such as performance, valve position, transient type, and reactivity. The results obtained from the application of the neural network-fuzzy reasoning integration in a high power research reactor clearly demonstrate the excellent tolerance of the virtual measuring device to faulty signals as well as its ability to accommodate noisy inputs.