ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Edward T. Dugan, Mohammed K. Alfakhar
Nuclear Technology | Volume 103 | Number 3 | September 1993 | Pages 417-425
Technical Note | Fission Reactor | doi.org/10.13182/NT93-A34862
Articles are hosted by Taylor and Francis Online.
Examination of externally moderated gas core reactor (GCR) neutronic calculations indicates that, in general, neutron diffusion theory is invalid and a higher order approximation to the transport equation needs to be employed. The Sn approximation yields accurate results but can require relatively long CPU computation times. A one-dimensional hybrid Sn-diffusion theory model is developed that employs the Sn approximation in the gas core region and for the first several mean free paths into the reflector region until the angular flux converges to its characteristic distribution in the reflector; diffusion theory is then used in the remaining portion of the reflector. A critical aspect of the hybrid scheme is to ensure proper interfacing between the Sn transport theory and diffusion theory approximations at the mathematical interface where the Sn-to-diffusion theory transition occurs. It is found that the point of transition from Sn theory to diffusion theory can be located closer to the core-reflector interface as the gas density in the core is reduced. Calculations performed on spherical GCR configurations for fuel gas densities ranging from 1018 to 1020 atom/cm3 and with both uniform and nonuniform fuel gas density distributions in the core show that the hybrid model gives accurate keff values and flux distributions as compared with results from the standard Sn approximation. For four energy groups and reflector thicknesses of 0.5 to 1.0 m, the hybrid model is roughly five times faster than a standard Sn calculation. For multigroup calculations on GCRs with thick (1 to 2 m) external moderator reflectors, the hybrid model is found to be about an order of magnitude faster than a standard Sn calculation.