ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Yoshitomo Inaba, Tetsuo Nishihara, Yoshikazu Nitta
Nuclear Technology | Volume 146 | Number 1 | April 2004 | Pages 49-57
Technical Paper | Reactor Safety | doi.org/10.13182/NT04-A3486
Articles are hosted by Taylor and Francis Online.
One of the most important safety design issues for a hydrogen production system coupling with a high-temperature gas-cooled reactor (HTGR) is to ensure reactor safety against fire and explosion accidents because a large amount of combustible fluid is dealt with in the system. The Japan Atomic Energy Research Institute has a demonstration test plan of a hydrogen production system by steam reforming of methane coupling with the high-temperature engineering test reactor (HTTR). In the plan, we developed the P2A code system to analyze event sequences and consequences in detail on the fire and explosion accidents assumed in the HTGR or HTTR hydrogen production system. This paper describes the three accident scenarios assumed in the system, the structure of P2A, the analysis procedure with P2A, and the results of the numerical analyses based on the accident scenarios. It is shown that P2A is a useful tool for the accident analysis in the system.