ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Yoshinori Miyoshi, Masafumi Itagaki, Masanori Akai, Hideyuki Hirose, Masao Hashimoto
Nuclear Technology | Volume 103 | Number 3 | September 1993 | Pages 380-391
Technical Paper | Nuclear Criticality Safety | doi.org/10.13182/NT93-A34858
Articles are hosted by Taylor and Francis Online.
In the nuclear criticality safety design of a nuclear fuel cycle facility, the geometric buckling of the fuel core is one of the most important quantities used in estimating criticality. When the material buckling value is known for a system consisting of fissile materials, it is possible to judge whether or not the system is subcritical by comparing the material buckling with the geometric buckling. It is widely known that the geometric buckling of a given core can be calculated by using a simple formula for some geometries, e.g., square, cylinder, slab, and sphere. The experimental results of the geometrical buckling for typical regular polygons are described. Geometric buckling for three types of regular polygons has been measured in light-water-moderated UO2-H2O lattices in the tank-type critical assembly at the Japan Atomic Energy Research Institute. Based on the known critical buckling of a given experimental lattice and the measured critical water levels, the horizontal buckling has been evaluated for various sizes of regular hexagonal, square, and regular triangular cores. This method is based on the separability of geometric buckling into horizontal and vertical components. From the measured critical water levels of each core, it was found that the horizontal buckling of the effective core region is inversely proportional to the square of the radius of the circumscribed circle of the core. The geometric buckling can therefore be expressed in the form of (aN/Rc)2 using the geometric constant aN. The data for geometric buckling values on these geometries are available for the validation of calculation codes, and the empirical formula for geometric buckling obtained in this study can be applied to the basic criticality safety design of fuel cycle facilities.