ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Atomic Canyon partners with INL on AI benchmarks
As interest and investment grows around AI applications in nuclear power plants, there remains a gap in standardized benchmarks that can quantitatively compare and measure the quality and reliability of new products.
Nuclear-tailored AI developer Atomic Canyon is moving to fill that gap by entering into a new strategic partnership with Idaho National Laboratory to develop and release the “first comprehensive benchmark suite for evaluating retrieval-augmented generation (RAG) and large language models (LLMs) in nuclear applications.”
Yoshiaki Oka, Sei-Ichi Koshizuka
Nuclear Technology | Volume 103 | Number 3 | September 1993 | Pages 295-302
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34852
Articles are hosted by Taylor and Francis Online.
The concept of a super critical-pressure, direct-cycle light water reactor is presented. Its feasibility is assessed by a study of its neutronic and thermal-hydraulic design. The system pressure is 250 bars. The coolant density decreases continuously in the core, and the coolant is fed directly to the turbines. This eliminates the recirculation system, steam separators, and dryers. The diameter of the reactor pressure vessel is smaller than that of a pressurized water reactor (PWR), and the vessel wall is not very thick despite the high pressure. The required core flow rate is about one-eighth that of a PWR. There are only two coolant loops in a 1145-MW(electric) reactor, and the turbines are smaller than those of a light water reactor. These features greatly simplify the reactor plant. The thermal efficiency is improved 19% over that of a PWR.