ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Yoshiaki Oka, Sei-Ichi Koshizuka
Nuclear Technology | Volume 103 | Number 3 | September 1993 | Pages 295-302
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34852
Articles are hosted by Taylor and Francis Online.
The concept of a super critical-pressure, direct-cycle light water reactor is presented. Its feasibility is assessed by a study of its neutronic and thermal-hydraulic design. The system pressure is 250 bars. The coolant density decreases continuously in the core, and the coolant is fed directly to the turbines. This eliminates the recirculation system, steam separators, and dryers. The diameter of the reactor pressure vessel is smaller than that of a pressurized water reactor (PWR), and the vessel wall is not very thick despite the high pressure. The required core flow rate is about one-eighth that of a PWR. There are only two coolant loops in a 1145-MW(electric) reactor, and the turbines are smaller than those of a light water reactor. These features greatly simplify the reactor plant. The thermal efficiency is improved 19% over that of a PWR.