ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Willard G. Winn
Nuclear Technology | Volume 103 | Number 2 | August 1993 | Pages 262-273
Technical Paper | Radiation Application | doi.org/10.13182/NT93-A34848
Articles are hosted by Taylor and Francis Online.
Germanium detector efficiencies for vial geometries are modeled as ε = k[1- exp(-bh)]/bh, where h is the sample fill-level of the vial and k and b are constants relative to h. The model is tested against experimental data generated with 6 germanium detectors (8.8 to 90% standard efficiencies), 3 vials (24- to 64-mm diameters, 4- to 65-mm fill-levels), and 11 gamma energies (88 to 1836 keV). These data represent over 1000 comparisons between the model and experimental measurements. The overall agreement is within a few percent, with average deviations <1.0% and root-mean-square deviations <3%. For typical applications, the model requires only a few (2 to 3) vial calibration measurements, as opposed to the larger number (6 to 8) typically used for empirical data fitting. Methods and examples are discussed for use of the general model. Limits of the gen eral model, attenuation corrections for different sample media, and nondestructive assay calibrations for slab samples are also discussed. Also, possible model extensions are discussed for including gamma-energy dependence and Marinelli counting geometries.