ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hans-Peter Hermansson, Göran Persson, Anneli Reinvall
Nuclear Technology | Volume 103 | Number 1 | July 1993 | Pages 101-113
Technical Paper | Reactor Operation | doi.org/10.13182/NT93-A34833
Articles are hosted by Taylor and Francis Online.
The corrosion products formed in boiling water reactor (BWR) coolant systems cause a wide range of problems due to reduced heat transfer and transportation of radioactivity. It is of prime interest to describe corrosion product properties in order to form a basis for the reduction of their negative influence on plant performance. Corrosion product particle characterization was carried out in connection with a study of precoat filtration of condensate water in eight Swedish and two Finnish BWRs. A variety of different techniques and tools were used in the characterization work. Filtration was used for the capture of particles, and scanning electron microscopy was used for size measurements, surface studies, and analysis of the elements present. The X-ray diffraction technique was usedfor phase determinations. A wide range of iron-containing particulate material is present in the water of different BWR systems. The corrosion products are strongly dominated by particulate material. Most particles are in the colloidal size range and are composed of small crystallites or amorphous material and normally have a negative surface charge. The largest number of particles in condensates is found in the submicron range. About 75% have a Feret’s diameter of <0.1 μm. The largest contribution to the integral particle volume, and thus also to the integral weight, comes from particles with a diameter >1 μm. The size of the particles is probably closely related to their surface charge and residence time. The phase composition varies between drains and condensates. Crystalline phases, such as magnetite, hematite, and lepidocrocite, have been observed in both cases. In condensates, there is a 50/50 relationship by weight between crystalline and amorphous particles, but in drains, crystalline particles are dominant. The reason for this difference is likely a much faster phase transformation at the higher temperatures in preheater drains. A high abundance of magnetite has been found in low-temperature areas such as the condenser. This shows that the Schikorr reaction, favored by high temperature, has little importance in the overall magnetite formation in BWRs.