ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Hans-Peter Hermansson, Göran Persson, Anneli Reinvall
Nuclear Technology | Volume 103 | Number 1 | July 1993 | Pages 101-113
Technical Paper | Reactor Operation | doi.org/10.13182/NT93-A34833
Articles are hosted by Taylor and Francis Online.
The corrosion products formed in boiling water reactor (BWR) coolant systems cause a wide range of problems due to reduced heat transfer and transportation of radioactivity. It is of prime interest to describe corrosion product properties in order to form a basis for the reduction of their negative influence on plant performance. Corrosion product particle characterization was carried out in connection with a study of precoat filtration of condensate water in eight Swedish and two Finnish BWRs. A variety of different techniques and tools were used in the characterization work. Filtration was used for the capture of particles, and scanning electron microscopy was used for size measurements, surface studies, and analysis of the elements present. The X-ray diffraction technique was usedfor phase determinations. A wide range of iron-containing particulate material is present in the water of different BWR systems. The corrosion products are strongly dominated by particulate material. Most particles are in the colloidal size range and are composed of small crystallites or amorphous material and normally have a negative surface charge. The largest number of particles in condensates is found in the submicron range. About 75% have a Feret’s diameter of <0.1 μm. The largest contribution to the integral particle volume, and thus also to the integral weight, comes from particles with a diameter >1 μm. The size of the particles is probably closely related to their surface charge and residence time. The phase composition varies between drains and condensates. Crystalline phases, such as magnetite, hematite, and lepidocrocite, have been observed in both cases. In condensates, there is a 50/50 relationship by weight between crystalline and amorphous particles, but in drains, crystalline particles are dominant. The reason for this difference is likely a much faster phase transformation at the higher temperatures in preheater drains. A high abundance of magnetite has been found in low-temperature areas such as the condenser. This shows that the Schikorr reaction, favored by high temperature, has little importance in the overall magnetite formation in BWRs.