ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Anna A. Afanasieva, Evgeniy V. Burlakov, Alexander V. Krayushkin, Andre V. Kubarev
Nuclear Technology | Volume 103 | Number 1 | July 1993 | Pages 1-9
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34825
Articles are hosted by Taylor and Francis Online.
When the causes of the accident at Chernobyl Unit 4 on April 26, 1986, were studied, particular attention was given to the positive void reactivity coefficient and the dynamic characteristics of the shutdown system. The role of these factors in the development of the accident is discussed. The physical nature of the void reactivity coefficient is considered. Safety measures added to the remaining RBMK-type reactors are described. These measures include installation of 80 stationary neutron absorbers in the core to decrease the void reactivity coefficient as well as modification of the absorber rods. The results of reactor parameter measurements after these measures were implemented are presented. The calculation methods are outlined, and the changes in the neutron physics characteristics after the Chernobyl accident are described. The measures taken to improve the safety of RBMK reactors preclude the possibility of another accident of the Chernobyl type. Possible further improvements in the operation of an RBMK reactor are discussed.