ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
E. Teuchert, K. A. Haas, H. J. Rütten, Yuliang Sun
Nuclear Technology | Volume 102 | Number 2 | May 1993 | Pages 192-195
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT93-A34816
Articles are hosted by Taylor and Francis Online.
In high-temperature reactors (HTRs), ingress of water introduces positive reactivity. Normally, this is controlled by the reactor itself, but in hypothetical situations, there could be a need for an active support by the control system. Calculational research identifies three reasons for the reactivity change caused by the water: (a) a negative contribution by the absorption of the hydrogen, (b) a positive contribution by the softening of the neutron energy spectrum, and (c) a reduction of the neutron leakage losses due to a shift in the neutron flux local distribution. By increasing the carbon/heavy metal ratio, the reactivity effect can be reduced to almost zero or even to negative values. In the modular pebble-bed HTR, this effect can be accomplished in a simple manner. By adding 25% of graphite spheres to the regular batches of feed fuel elements, the neutron spectrum effect is reduced, and the fractional absorption of hydrogen is increased; thus, the maximum excess reactivity is limited to 0.3%. The effect on economy and safety is negligible.