ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. H. Amarasooriya, Hongfei Yan, Umesh Ratnam,†, Theo G. Theofanous
Nuclear Technology | Volume 101 | Number 3 | March 1993 | Pages 354-384
Technical Paper | Severe Accident Technology / Nuclear Reactor Safety | doi.org/10.13182/NT93-A34794
Articles are hosted by Taylor and Francis Online.
This is the third part of a three-part series of papers addressing the probability of liner failure in a Mark-I containment. The purpose is to quantify the corium/concrete interactions and liner attack phenomena in a form suitable for use in the probabilistic framework as discussed in the first part of this series. In the quantifications of corium/concrete interactions, the principal parameter of interest is the melt superheat transient, especially as it is affected by the oxidation of the metallic components in the melt. A computer code specifically developed for this purpose is also described and compared with available experimental data. In the quantification of the liner attack phenomena, the principal parameters are melt-to-liner heat transfer coefficient and liner failure criteria. The assessment of the heat transfer coefficient is based on experiments that simulate the melt-to-liner contact (recirculating) flow regime, which were specifically run for this purpose. The consideration of liner failure criteria includes finite element analyses addressing the potential for structural failure (due to loss of strength in high-temperature steel) in addition to straightforward failure by melting. The two-dimensional and transient aspects of the heat transfer problem, including solid-liquid phase change at the melt-liner interface, are shown to be important, and the quantification is carried out by means of an analysis tool specifically developed for this purpose.