ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
W. H. Amarasooriya, Hongfei Yan, Umesh Ratnam,†, Theo G. Theofanous
Nuclear Technology | Volume 101 | Number 3 | March 1993 | Pages 354-384
Technical Paper | Severe Accident Technology / Nuclear Reactor Safety | doi.org/10.13182/NT93-A34794
Articles are hosted by Taylor and Francis Online.
This is the third part of a three-part series of papers addressing the probability of liner failure in a Mark-I containment. The purpose is to quantify the corium/concrete interactions and liner attack phenomena in a form suitable for use in the probabilistic framework as discussed in the first part of this series. In the quantifications of corium/concrete interactions, the principal parameter of interest is the melt superheat transient, especially as it is affected by the oxidation of the metallic components in the melt. A computer code specifically developed for this purpose is also described and compared with available experimental data. In the quantification of the liner attack phenomena, the principal parameters are melt-to-liner heat transfer coefficient and liner failure criteria. The assessment of the heat transfer coefficient is based on experiments that simulate the melt-to-liner contact (recirculating) flow regime, which were specifically run for this purpose. The consideration of liner failure criteria includes finite element analyses addressing the potential for structural failure (due to loss of strength in high-temperature steel) in addition to straightforward failure by melting. The two-dimensional and transient aspects of the heat transfer problem, including solid-liquid phase change at the melt-liner interface, are shown to be important, and the quantification is carried out by means of an analysis tool specifically developed for this purpose.