ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. S. Yeung, Jen Wu, R. T. Fernandez, R. K. Sundaram
Nuclear Technology | Volume 101 | Number 2 | February 1993 | Pages 244-251
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT93-A34786
Articles are hosted by Taylor and Francis Online.
The results of the transient behavior of the water cannon phenomenon determined by RELAP5/MOD3 Version 5m5 are presented. The physical system consists of a 0.7112-m-long, 0.0381-m-i.d. vertical tube partially immersed in a reservoir of subcooled water. The tube is closed at the top and initially filled with saturated steam. The water cannon is created when a liquid slug is drawn into the tube because of the rapid condensation of the steam. In a fraction of a second, the liquid slug strikes the top end of the tube and causes a large pressure spike. The primary objective is to apply the RELAP5/MOD3 computer code to analyze the water cannon event and assess the ability of RELAP5/MOD3 to simulate fast two-phase transients. The sensitivity of time-step size and mesh size has been studied. It is found that RELAP5/MOD3 adequately simulated the transient process with a mesh size of 0.07112 m (i.e., ten nodes) and a time-step size of 10−5 s. The calculated peak pressure of the first pressure spike is of the same order of magnitude as experimental data from literature. The effect of reservoir temperature on the magnitude of the first pressure spike is also studied, and it is found that the pressure peak value decreased with increasing reservoir temperature.