ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
W. S. Yeung, Jen Wu, R. T. Fernandez, R. K. Sundaram
Nuclear Technology | Volume 101 | Number 2 | February 1993 | Pages 244-251
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT93-A34786
Articles are hosted by Taylor and Francis Online.
The results of the transient behavior of the water cannon phenomenon determined by RELAP5/MOD3 Version 5m5 are presented. The physical system consists of a 0.7112-m-long, 0.0381-m-i.d. vertical tube partially immersed in a reservoir of subcooled water. The tube is closed at the top and initially filled with saturated steam. The water cannon is created when a liquid slug is drawn into the tube because of the rapid condensation of the steam. In a fraction of a second, the liquid slug strikes the top end of the tube and causes a large pressure spike. The primary objective is to apply the RELAP5/MOD3 computer code to analyze the water cannon event and assess the ability of RELAP5/MOD3 to simulate fast two-phase transients. The sensitivity of time-step size and mesh size has been studied. It is found that RELAP5/MOD3 adequately simulated the transient process with a mesh size of 0.07112 m (i.e., ten nodes) and a time-step size of 10−5 s. The calculated peak pressure of the first pressure spike is of the same order of magnitude as experimental data from literature. The effect of reservoir temperature on the magnitude of the first pressure spike is also studied, and it is found that the pressure peak value decreased with increasing reservoir temperature.