ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Yukiharu Ohga, Hiroshi Seki
Nuclear Technology | Volume 101 | Number 2 | February 1993 | Pages 159-167
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT93-A34777
Articles are hosted by Taylor and Francis Online.
The combination of a neural network and knowledge processing have been used to identify abnormal events that cause a reactor to scram in a nuclear power plant. The neural network recognizes the abnormal event from the change pattern of analog data for state variables, and this result is confirmed from digital data using a knowledge base of plant status when each event occurs. The event identification method is tested using test data based on simulated results of a transient analysis program for boiling water reactors. It is confirmed that a neural network can identify an event in which it has been trained even when the plant conditions, such as fuel burnup, differ from those used in the training and when the analog data contain white noise. The network does not mistakenly identify the nontrained event as a trained one. The method is feasible for event identification, and knowledge processing improves the reliability of the identification.