ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Ohio announces $100M Energy Opportunity Initiative fund
Ohio Gov. Mike DeWine recently announced the creation of the new JobsOhio Energy Opportunity Initiative, a $100 million fund that will be used in part to attract supply chain companies for small modular reactor manufacturing and for the creation of “nuclear energy center of excellence.”
Yukiharu Ohga, Hiroshi Seki
Nuclear Technology | Volume 101 | Number 2 | February 1993 | Pages 159-167
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT93-A34777
Articles are hosted by Taylor and Francis Online.
The combination of a neural network and knowledge processing have been used to identify abnormal events that cause a reactor to scram in a nuclear power plant. The neural network recognizes the abnormal event from the change pattern of analog data for state variables, and this result is confirmed from digital data using a knowledge base of plant status when each event occurs. The event identification method is tested using test data based on simulated results of a transient analysis program for boiling water reactors. It is confirmed that a neural network can identify an event in which it has been trained even when the plant conditions, such as fuel burnup, differ from those used in the training and when the analog data contain white noise. The network does not mistakenly identify the nontrained event as a trained one. The method is feasible for event identification, and knowledge processing improves the reliability of the identification.