ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Donald B. Jarrell, Daniel R. Sisk, Leonard J. Bond
Nuclear Technology | Volume 145 | Number 3 | March 2004 | Pages 275-286
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT04-A3477
Articles are hosted by Taylor and Francis Online.
The assumptions used in the design basis of process equipment have always been as much art as science. The usually imprecise boundaries of the equipments' operational envelope provide opportunities for two major improvements in the operations and maintenance (O&M) of process machinery: (a) the actual versus intended machine environment can be understood and brought into much better alignment and (b) the end goal can define O&M strategies in terms of life cycle and economic management of plant assets.Scientists at the Pacific Northwest National Laboratory (PNNL) have performed experiments aimed at understanding and controlling aging of both safety-specific nuclear plant components and the infrastructure that supports essential plant processes. In this paper we examine the development of aging precursor metrics and their correlation with degradation rate and projected machinery failure.Degradation-specific correlations have been developed at PNNL that will allow accurate physics-based diagnostic and prognostic determinations to be derived from a new view of condition-based maintenance. This view, founded in root cause analysis, is focused on quantifying the primary stressor(s) responsible for degradation in the component of interest and formulating a deterministic relationship between the stressor intensity and the resulting degradation rate. This precursive relationship between the performance, degradation, and underlying stressor set is used to gain a first-principles approach to prognostic determinations. A holistic infrastructure approach, as applied through a conditions-based maintenance framework, will allow intelligent, automated diagnostic and prognostic programming to provide O&M practitioners with an understanding of the condition of their machinery today and an assurance of its operational state tomorrow.