ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Paul E. Murray
Nuclear Technology | Volume 100 | Number 1 | October 1992 | Pages 135-140
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34759
Articles are hosted by Taylor and Francis Online.
The numerical solution of heat transfer problems may involve substantial execution time, and much of the execution time may be spent in the matrix solver. Iterative solution methods may be more efficient than direct methods for solving a large matrix equation. Although iterative methods have been applied to many fields of engineering simulation, they are not widely used in nuclear reactor simulation. Moreover, the selection of a suitable iterative method depends on the problem. Heat transfer in nuclear reactors is a complex process that includes solid conduction, fluid advection, radiation, and convection between solid and fluid. Thus, the feasibility of matrix iterative solution methods is investigated, and the numerical performance of a selected iterative method is assessed. The preconditioned generalized conjugate residual (PGCR) method is an iterative method used in the integrated systems code (ISC) to simulate heat transfer in a modular high-temperature gas-cooled reactor. The numerical performance of the PGCR method is assessed to determine the computational requirements of the ISC. A steady-state heat transfer problem that includes conduction, convection, advection, and radiation heat transfer is solved in the performance study. The execution time of the PGCR method is obtained in the cases of four matrix sizes and three values of the heat transfer Biot number. The Biot number is varied to examine a complete range of convective heat transfer conditions. The execution time per equation is 0.22 to 0.55 ms on the Cray X-MP and 1.6 to 5.0 ms on the Dec 5000 workstation. These results show that the PGCR method is effective for nuclear reactor heat transfer calculations and provides an efficient and reliable computational performance.