ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Paul E. Murray
Nuclear Technology | Volume 100 | Number 1 | October 1992 | Pages 135-140
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34759
Articles are hosted by Taylor and Francis Online.
The numerical solution of heat transfer problems may involve substantial execution time, and much of the execution time may be spent in the matrix solver. Iterative solution methods may be more efficient than direct methods for solving a large matrix equation. Although iterative methods have been applied to many fields of engineering simulation, they are not widely used in nuclear reactor simulation. Moreover, the selection of a suitable iterative method depends on the problem. Heat transfer in nuclear reactors is a complex process that includes solid conduction, fluid advection, radiation, and convection between solid and fluid. Thus, the feasibility of matrix iterative solution methods is investigated, and the numerical performance of a selected iterative method is assessed. The preconditioned generalized conjugate residual (PGCR) method is an iterative method used in the integrated systems code (ISC) to simulate heat transfer in a modular high-temperature gas-cooled reactor. The numerical performance of the PGCR method is assessed to determine the computational requirements of the ISC. A steady-state heat transfer problem that includes conduction, convection, advection, and radiation heat transfer is solved in the performance study. The execution time of the PGCR method is obtained in the cases of four matrix sizes and three values of the heat transfer Biot number. The Biot number is varied to examine a complete range of convective heat transfer conditions. The execution time per equation is 0.22 to 0.55 ms on the Cray X-MP and 1.6 to 5.0 ms on the Dec 5000 workstation. These results show that the PGCR method is effective for nuclear reactor heat transfer calculations and provides an efficient and reliable computational performance.