ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Michael D. Allen, Martin M. Pilch, Richard O. Griffith, Robert T. Nichols
Nuclear Technology | Volume 100 | Number 1 | October 1992 | Pages 52-69
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34753
Articles are hosted by Taylor and Francis Online.
The limited flight path experiments investigate the effect of reactor subcompartment flight path length on direct containment heating (DCH) in a severe reactor accident. The test series consists of eight experiments with nominal flight paths of 1, 2, or 8 m. A thermitically generated mixture of iron, chromium, and alumina simulates the corium melt of a severe accident in a light water reactor. After thermite ignition, superheated steam forcibly ejects the molten debris into a 1:10 linear scale model of either the Surry or Zion reactor cavity. The blowdown steam entrains the molten debris and disperses it into a 103-m3 containment model. The vessel pressure, gas temperature, debris temperature, hydrogen produced by steam/metal reactions, debris velocity, mass dispersed into the Surtsey vessel, and debris particle size are measured for each experiment. The measured peak pressure for each experiment is normalized by the total amount of energy introduced into the Surtsey vessel and increases with lengthened flight path. The debris temperature at the cavity exit is ∼2320 K. Gas grab samples indicate that steam in the cavity reacts rapidly to form hydrogen, so the driving gas is a mixture of steam and hydrogen. In these experiments, ∼70% of the steam driving gas is converted to hydrogen. These experiments indicate that the bulk of DCH interactions occur below the subcompartment structure, not in the upper dome of Surtsey. The effect of deentrainment by reactor subcompartments may significantly reduce the peak containment load in a severe reactor accident.