ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Michael D. Allen, Martin M. Pilch, Richard O. Griffith, Robert T. Nichols
Nuclear Technology | Volume 100 | Number 1 | October 1992 | Pages 52-69
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34753
Articles are hosted by Taylor and Francis Online.
The limited flight path experiments investigate the effect of reactor subcompartment flight path length on direct containment heating (DCH) in a severe reactor accident. The test series consists of eight experiments with nominal flight paths of 1, 2, or 8 m. A thermitically generated mixture of iron, chromium, and alumina simulates the corium melt of a severe accident in a light water reactor. After thermite ignition, superheated steam forcibly ejects the molten debris into a 1:10 linear scale model of either the Surry or Zion reactor cavity. The blowdown steam entrains the molten debris and disperses it into a 103-m3 containment model. The vessel pressure, gas temperature, debris temperature, hydrogen produced by steam/metal reactions, debris velocity, mass dispersed into the Surtsey vessel, and debris particle size are measured for each experiment. The measured peak pressure for each experiment is normalized by the total amount of energy introduced into the Surtsey vessel and increases with lengthened flight path. The debris temperature at the cavity exit is ∼2320 K. Gas grab samples indicate that steam in the cavity reacts rapidly to form hydrogen, so the driving gas is a mixture of steam and hydrogen. In these experiments, ∼70% of the steam driving gas is converted to hydrogen. These experiments indicate that the bulk of DCH interactions occur below the subcompartment structure, not in the upper dome of Surtsey. The effect of deentrainment by reactor subcompartments may significantly reduce the peak containment load in a severe reactor accident.