ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Leonard W. Ward
Nuclear Technology | Volume 100 | Number 1 | October 1992 | Pages 25-38
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34751
Articles are hosted by Taylor and Francis Online.
Since the loss of vital alternating current power and the residual heat removal system (RHRS) during shutdown at Vogtle Unit 1 on March 20, 1990, much attention has been focused on the need to evaluate system performance following such an event in a light water reactor. To evaluate system response following loss of the RHRS, a simplified, transient, nonequilibrium methodology was developed to provide early insights into the accident consequences and identify key phenomenological and system behavior in need of further, more detailed studies. During shutdown, with the reactor coolant system (RCS) at reduced pressure and temperature, inventory reductions are achieved through the introduction of nitrogen into the system. On removal of the man way entries, air can then enter the system. If the RHRS fails under such conditions, the steam generators may be able to be used as an alternate means of decay heat removal provided RCS integrity can be ensured. Moreover, once boiling initiates, RCS pressure increases because of the presence of noncondensable gases in the system. As a consequence, there is a need to assess the RCS pressure response since the success of this strategy depends on whether the peak pressure is sufficient to cause failure of any of the RCS temporary boundaries used during plant refueling outages. If there is insufficient time to close an open RCS and boiling initiates, a source of coolant makeup is needed to prevent core uncovery and fuel damage. Should boiling persist for several hours, an appreciable amount of boric acid accumulates in the reactor vessel. The subsequent restoration of the RHRS may result in the inadvertent precipitation of the boric acid in the RHRS lines, preventing its further use for decay heat removal. The methodology serves as an analytical tool to assess the RCS peak pressure when attempting to utilize the steam generators following a loss of the RHRS during shutdown and the consequences of borated water addition for long-term core cooling in the event the RCS is open to the containment. The analyses demonstrate that the steam generators could be used for heat removal from reduced inventory conditions at shutdown provided the RCS integrity can be ensured. If the RCS cannot be closed and loss of the RHRS results in boiling, the simple action of adding borated water to the RCS to prevent core uncovery poses a potential boric acid precipitation concern during the long term. The results of the evaluation in which the steam generators are used as an alternate means of decay heat removal are pertinent to pressurized water reactors utilizing U-tube steam generator designs. Further research is being conducted to assess behavior in plants utilizing once-through steam generators. Peak pressures are not expected to differ significantly from that for the U-tube design.