ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Antonio F. Dias, Laurance D. Eisenhart, Diane M. Bell, Terry J. Garrett, Glenn J. Neises, Lance J. Agee
Nuclear Technology | Volume 100 | Number 2 | November 1992 | Pages 193-202
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34742
Articles are hosted by Taylor and Francis Online.
The steamline break accident is one of several specified severe transients addressed in the final safety analysis report for any pressurized water reactor plant as part of the licensing procedure. A rupture in a main steamline in the secondary system causes a sudden cooling of the water in the corresponding primary loop. The cold water flowing into part of the core represents a positive reactivity insertion that must be contained by control rods, which are scrammed into the core almost immediately. Later in the scenario, soluble boron reaches the core from the emergency core cooling system. When simulating a steamline break accident during the licensing procedure, many conservative assumptions are added to the transient description. Historically, a steamline break analysis is performed with a system analysis code like RETRAN, using a rather simplified (point kinetics) description of the core. The three-dimensionality of the event within the core is accounted for by constant “blending factors,” which are used to calculate the evolving point kinetics parameters based on a simplistic cold and hot partition of the core. The ARROTTA-01 and VIPRE-02 computer codes are coupled to allow a detailed three-dimensional simulation of the reactor core during a steamline break event. The results show that a much milder transient is observed than when a point kinetics treatment was used. Test cases study the influence of different core modeling considerations on the overall simulation. The advent of very fast and extremely affordable computing machines (e.g., workstations) should cause the review of some of the simplified approaches initially adopted for many core simulations. More complex and detailed codes can now be routinely employed.