ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
James T. Cronin, Kord S. Smith
Nuclear Technology | Volume 100 | Number 2 | November 1992 | Pages 174-183
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34740
Articles are hosted by Taylor and Francis Online.
A methodology for homogenization and functionalization of one-dimensional cross sections for RETRAN has been developed and encoded into the SIMULATES and SLICK computer programs. The method relies on the SIMULATE-3 nodal reactor analysis code to provide accurate solutions of the three-dimensional neutron diffusion equation in two energy groups. The process of producing the required data involves two distinct problems: (a) the spatial homogenization of the three-dimensional cross sections and diffusion coefficients into one-dimensional variables and (b) the functionalization of the one-dimensional data in terms of the feedback variables of coolant density, fuel temperature, and control fraction. The homogenization method is based on equivalence theory and preserves the eigenvalue and one-dimensional planar reaction rates of the three-dimensional solution. The functionalization of the homogenized cross sections is accomplished by performing analogous one-dimensional state calculations with the RETRAN thermal-hydraulic models and then fitting to the RETRAN feedback variables. The methodology has been verified by comparing the results of one-dimensional calculations performed with the one-dimensional cross sections to three-dimensional calculations. Close agreement between the one- and three-dimensional results has been demonstrated.