ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
U. Kamachi Mudali, R. K. Dayal, J. B. Gnanamoorthy
Nuclear Technology | Volume 100 | Number 3 | December 1992 | Pages 395-402
Technical Note | Enrichment and Reprocessing System | doi.org/10.13182/NT92-A34734
Articles are hosted by Taylor and Francis Online.
Titanium anodes with coatings of mixed oxides of RuO2 and TiO2 and RuO2, TiO2, and PtO2 are prepared by a thermal decomposition method, which consists of applying coating solutions containing salts of ruthenium, titanium, and platinum over a pretreated titanium surface, drying, and heat treating at 775 K for 1 h. X-ray diffraction studies on these samples confirm the presence of oxide phases of RuO2, rutile TiO2, and PtO2 over the surface. Scanning electron microscope observations show that the microcracks in the coating decrease as the RuO2 content is increased and that the PtO2 overlay generally has fewer microcracks. X-ray photoelectron spectroscopy analyses indicate the presence of ruthenium as Ru4+, titanium as Ti4+ and platinum as elemental platinum as well as Pt2+ and Pt4+ in the coating. Testing of these anodes during the electro-oxidative dissolution of UC and (U,Pu)C in an HNO3 medium containing cerium nitrate indicates that the anode with a lower RuO2 content can be used only up to 340 K, whereas with an increase in the RuO2 content as well as with an overlay of PtO2, the anodes can be used even in a boiling nitric acid medium with improved cell performance.