ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Brent J. Lewis, Fernando C. Iglesias, C. E. Laurence Hunt, David S. Cox
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 330-342
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34717
Articles are hosted by Taylor and Francis Online.
An analytical model has been developed to describe the kinetic release behavior of the volatile fission product species (e.g., cesium) from uranium dioxide fuel. This treatment is based on the analysis of a series of out-of-pile annealing tests with bare fuel specimens, at temperatures of 1200 to 1800°C, performed under a wide range of atmospheric conditions that are characteristic of a severe reactor accident. The physically based model accounts for the changing fuel stoichiometry. A more general framework is therefore provided to detail the release kinetics in reducing and oxidizing environments. Solid-state diffusion in the fuel matrix is shown to be the rate-controlling mechanism of release in atmospheres of either hydrogen or argon. On the other hand, in addition to the slower diffusion component, it is demonstrated that a “burst-release” process also occurs in a steam environment, in accordance with first-order rate theory, where fission products are rapidly released at small values of the stoichiometry deviation.