ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Evgueny P. Shabalin
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 280-288
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34712
Articles are hosted by Taylor and Francis Online.
Physicists dealing with conventional reactor dynamics recognize two types of instability and reactor behavior beyond the stability region: asymptotic excur sions and nonlinear periodic oscillations. A periodically pulsed reactor (PPR) has another peculiar instability: Under certain conditions, its power tends to oscillate at a frequency just twice less than the reactor pulsation frequency. The PPR dynamics far beyond the stability region are analyzed by using a discrete nonlinear model. A PPR with a negative temperature reactivity effect inevitably shows the chaotic power pulse energy behavior known as “deterministic chaos.” The way by which a reactor goes to chaos is defined by the time de pendence of the feedback and by the kind of dynamics model used. The most usual case is a Feigenbaum transition in which the PPR passes through an infinite cascade of oscillation period doubling before chaotic motion appears. The transition of PPR to random behavior through the Feigenbaum scenario must be considered to be “safe.”