ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Hiroshi Sugai, Kenzo Munakata
Nuclear Technology | Volume 99 | Number 2 | August 1992 | Pages 235-241
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT92-A34693
Articles are hosted by Taylor and Francis Online.
In solvent extraction for nuclear fuel reprocessing, a stable emulsion called “crud” is formed at the interface between the organic and aqueous phases. Crud is an emulsion stabilized by finely dispersed solids. Process disturbances are often induced by crud. Accordingly, crud should be eliminated from the interface in the extractors. The eliminated crud is stable and highly radioactive; thus, the treatment of this crud may be difficult. Complexes of zirconium and tributyl phosphate (TBP) degradation products, such as phosphoric acid (H3PO4) and mono-n-butyl phosphate (H2MBP), are one source of the fine particles that stabilize emulsions in the extraction process. A chemical treatment method to demulsify crud stabilized by precipitates of Zr-H3PO4 and Zr-H2MBP is studied. Experimental results indicate that neutralization by an alkaline solution, particularly sodium carbonate, is very effective for the destruction of this crud.