ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Hiroshi Sugai, Kenzo Munakata
Nuclear Technology | Volume 99 | Number 2 | August 1992 | Pages 235-241
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT92-A34693
Articles are hosted by Taylor and Francis Online.
In solvent extraction for nuclear fuel reprocessing, a stable emulsion called “crud” is formed at the interface between the organic and aqueous phases. Crud is an emulsion stabilized by finely dispersed solids. Process disturbances are often induced by crud. Accordingly, crud should be eliminated from the interface in the extractors. The eliminated crud is stable and highly radioactive; thus, the treatment of this crud may be difficult. Complexes of zirconium and tributyl phosphate (TBP) degradation products, such as phosphoric acid (H3PO4) and mono-n-butyl phosphate (H2MBP), are one source of the fine particles that stabilize emulsions in the extraction process. A chemical treatment method to demulsify crud stabilized by precipitates of Zr-H3PO4 and Zr-H2MBP is studied. Experimental results indicate that neutralization by an alkaline solution, particularly sodium carbonate, is very effective for the destruction of this crud.