ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Nicholas J. Morley, Mohamed S. El-Genk
Nuclear Technology | Volume 99 | Number 2 | August 1992 | Pages 188-202
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34689
Articles are hosted by Taylor and Francis Online.
A key element in the conceptual design of a nuclear reactor power system for a manned Mars rover is the analysis, design, and integration of the radiation shield. A shield analysis is carried out to characterize the thickness and spacing of shield layers to provide the minimum mass configuration that meets a dose rate requirement of300 mSv/yr. The analysis utilizes a two-dimensional transport code to model the reactor and to provide a source term that is subsequently used to calculate dose rates as a function of reactor power level and shield layer thickness. Results show that a multilayered tungsten and lithium hydride (LiH) shield would satisfy the dose rate limit of300 mSv/yr (30 rem/yr) to the rover crew. The position of two tungsten and LiH layers is varied to minimize secondary gamma-ray production and to optimize shield mass. Shield design geometry includes consideration of astronaut activity location and results in a shaped 4-π configuration that provides the required attenuation.