ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Nicholas J. Morley, Mohamed S. El-Genk
Nuclear Technology | Volume 99 | Number 2 | August 1992 | Pages 188-202
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34689
Articles are hosted by Taylor and Francis Online.
A key element in the conceptual design of a nuclear reactor power system for a manned Mars rover is the analysis, design, and integration of the radiation shield. A shield analysis is carried out to characterize the thickness and spacing of shield layers to provide the minimum mass configuration that meets a dose rate requirement of300 mSv/yr. The analysis utilizes a two-dimensional transport code to model the reactor and to provide a source term that is subsequently used to calculate dose rates as a function of reactor power level and shield layer thickness. Results show that a multilayered tungsten and lithium hydride (LiH) shield would satisfy the dose rate limit of300 mSv/yr (30 rem/yr) to the rover crew. The position of two tungsten and LiH layers is varied to minimize secondary gamma-ray production and to optimize shield mass. Shield design geometry includes consideration of astronaut activity location and results in a shaped 4-π configuration that provides the required attenuation.