ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Akira Yasuo, Fumio Inada, Masataka Hidaka
Nuclear Technology | Volume 99 | Number 2 | August 1992 | Pages 135-141
Technical Paper | Fission Reactor | doi.org/10.13182/NT92-A34684
Articles are hosted by Taylor and Francis Online.
The feasibility of higher power rates for natural-circulation boiling water reactors (BWRs) is studied with the objective of examining the flexibility of the plant power rate in constructing such plants to cope with the increasing demand for electricity. By applying existing one-dimensional design codes, the riser heights necessary to meet two major thermal-hydrau-lic requirements, i.e., critical power and core stability, are systematically calculated. Several restrictions on the maximum diameter and height of the pressure vessel are also considered because these restrictions could make construction impossible or drastically increase the construction costs. A very simple map of the dominant parameters for higher power rates is obtained. It is concluded that natural-circulation BWRs of >1000 MW(electric) will be feasible within the restrictions considered here.