ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Gee Yong Park, Jinho Park, Poong Hyun Seong
Nuclear Technology | Volume 145 | Number 2 | February 2004 | Pages 177-188
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3468
Articles are hosted by Taylor and Francis Online.
Information on the steam and feedwater flow rates in the secondary loop of nuclear power plants is valuable for thermal efficiency estimation and the related controllers in nuclear power plants. However, the high level of noise in measuring flow rates detracts from the usefulness of this information and forces the operator to exclude the values of the steam and feedwater flow rates when controlling the water level of a steam generator at low operating powers. In recent years, it has been proposed that the wavelet transform can reconstruct a signal that approximates very closely the original signal under a high level of noise. A possible way of differentiating the flow rate from noise is proposed by use of the wavelet noise-reduction or denoising technique and, as one of the potential applications for nuclear power plants, the wavelet transform is incorporated into the water-level controller of steam generators for successful control at low operating powers.