ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Min Lee, Jiing-Huae Wu
Nuclear Technology | Volume 98 | Number 3 | June 1992 | Pages 289-306
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34660
Articles are hosted by Taylor and Francis Online.
Operators need to initiate feed-and-bleed (F&B) cooling to depressurize and cool down the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the event of a loss of all feedwater. Long-term responses of the RCS and containment of a PWR in the loss-of-all-feedwater event with and without F&B cooling are analyzed with the Modular Accident Analysis Program (MAAP) computer code. Results of the MAAP analyses are compared with those from the RELAP5/MOD2 code. Results of the MAAP analyses show that the execution of F&B cooling at 48 min, as the steam generator secondary-side water level reaches a 6%-wide range, could depressurize the RCS along the coolant saturation curve with an average cooldown rate of 13 K/h. The conditions of the RCS reach the entry point of the residual heat removal system at ∼7 h. The RCS could still be depressurized if the execution of the F&B cooling operation is delayed to 70 and 100 min, i.e., ∼6 min after steam generator secondary-side dryout and 2 min after core uncovery, respectively. The average RCS cooldown rate, however, is above the limit specified in the technical specifications. Delaying execution of F&B cooling to 133 min can still depressurize the RCS. That, however, is too late to prevent the core from melting. Plant characteristics that are important for the responses of the RCS to F&B cooling are the flow capacity and the setpoints of the pressurizer power-operated relief valves, the flow rate, and the shutoff head of the high-head safety injection system. Results of the MAAP calculations need to be interpreted carefully because of the simplified nature of the MAAP code. Benchmark exercises of the MAAP input deck against the sophisticated system analysis code are essential for the validity of the MAAP results.