ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Gilberto Espinosa-Paredes, Jose Alvarez-Ramirez, Alejandro Nuñez-Carrera, Alfonso Garcia-Gutierrez, Elizabeth Jeannette Martinez-Mendez
Nuclear Technology | Volume 145 | Number 2 | February 2004 | Pages 150-162
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3466
Articles are hosted by Taylor and Francis Online.
A comparative analysis of the dynamic behavior of a boiling water reactor in a full-scope power plant simulator for operator training is presented. Three- and four-equation reactor core models were used to examine three transients following tests described in acceptance test procedures: scram, loss of feedwater flow, and closure of main isolation valves. The three-equation model consists of water and steam mixture momentum, including mass and energy balances. The four-equation model is based on liquid and gas phase mass balances, together with a drift-flux approach for the analysis of phase separation. Analysis of the models showed that the scram transient was slightly different for three- and four-equation models. The drift-flux effects can explain such differences. Regarding the loss-of-feedwater transient, the predicted steam flow after scram is larger for the three-equation model. Finally, for the transient related to the closure of main steam isolation valves, the three-equation model provides slightly different results for the pressure change, which affects reactor level behavior.