ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Rogelio Castillo, Gustavo Alonso, Javier C. Palacios
Nuclear Technology | Volume 145 | Number 2 | February 2004 | Pages 139-149
Technical Paper | Reactor Safety | doi.org/10.13182/NT04-A3465
Articles are hosted by Taylor and Francis Online.
A method for nonlinear analysis of instabilities in boiling water reactors (BWRs) is presented. Both the Dominant Lyapunov Exponent method and the Slope of the Correlation Integral (SOCI) method are used to analyze the average power reactor monitor (APRM) signals from a BWR. The main advantage of using the two methods in a complementary manner is that doing so results in an enhancement of the capability to analyze noisy systems, such as the APRM signals in a BWR. Previously, such nonlinear analysis had been performed using independently either the Dominant Lyapunov Exponent Method or the SOCI method. These two methods are sensitive to noise in a signal and normally require large amounts of data for a reliable analysis.This proposed system for nonlinear analysis is composed first of a home-developed computer program called "SLOPE," which is based on the SOCI method. Then, the signal analysis is also performed by the "LENNS" code, which is used to obtain the dominant Lyapunov exponent. Since only the dominant Lyapunov exponent is computed, there is no need to acquire large amounts of data; thus, computational processing time is greatly reduced, even in the case of noisy data.The system was used to analyze BWR signals containing stationary and nonstationary limit cycles. It was found that this method satisfactorily calculates the limit cycles, extracting useful information from noisy signals.