ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Werner Maschek, Claus Dieter Munz, Leonhard Meyer
Nuclear Technology | Volume 98 | Number 1 | April 1992 | Pages 27-43
Technical Paper | Fast Reactor Safety / Nuclear Reactor Safety | doi.org/10.13182/NT92-A34648
Articles are hosted by Taylor and Francis Online.
Analyses of unprotected loss-of-flow accidents for medium-size cores of current liquid-metal fast breeder reactors have shown that the accident proceeds into a transition phase where further meltdown is accompanied by recriticalities and secondary excursions. Assuming very pessimistic conditions concerning fuel discharge and blockage formation, a neutronically active whole-core pool of molten material can form. Neutronic or thermohydraulic disturbances may initiate a special motion pattern in these pools, called centralized sloshing, which can lead to energetic power excursions. If such a whole-core pool is formed, its energetic potential must be adequately assessed. This requires sufficiently correct theoretical tools (codes) and proper consideration of the fluid-dynamic and thermohydraulic conditions of these pools. A series of experiments has been performed that serves as a benchmark for the SIMMER-II and the AFDM codes in assessing their adequacy in modeling such sloshing motions. Additional phenomenologically oriented experiments provide deeper insight into general motion patterns of sloshing fluids while taking special notice of asymmetries and obstacles that exist in such pools.