ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Sung Sik Kang, In Sup Kim
Nuclear Technology | Volume 97 | Number 3 | March 1992 | Pages 336-343
Technical Paper | Material | doi.org/10.13182/NT92-A34641
Articles are hosted by Taylor and Francis Online.
The effect of dynamic strain aging (DSA) on fracture is investigated on the quenched and tempered specimens of American Society of Mechanical Engineers (ASME) standard SA508 class 3 nuclear pressure vessel steel. Serrated flow by DSA is observed between 180 and 340°C at a tensile strain rate of 2.08 × 10−4/s and 1.25 × 10−3/s. The DSA causes a sharp rise in the ultimate tensile strength and a marked decrease in ductility. The DSA range shifts to higher temperatures with increased strain rates. The temperature and strain rate dependence of the onset of serrations yields an activation energy of 16.2 kcal/mol, which suggests that the process is controlled by interstitial diffusion of carbon and nitrogen in ferrite. The Ji value obtained from the direct current potential drop (DCPD) method, for true crack initiation, is lowered by DSA. The drop in Ji at elevated temperatures may be because of the interaction of the interstitial impurities with dislocations at the crack front. Compared with JIC from American Society for Testing and Materials (ASTM) standard E813, the Ji by DCPD is a better parameter to use to detect the DSA effect on fracture toughness. Crack propagation is also affected in terms of the tearing modulus. The tearing modulus in dynamic strain aging is ∼30% smaller than that at room temperature.