ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Findings of the ANS Executive Order Expert Advisory Group
On May 23, President Donald Trump signed four Executive Orders (EOs) designed to “usher in a nuclear energy renaissance” by building on federal policies and programs and directing efficiencies in the licensing, siting, development, and deployment of advanced reactor technologies.
In order to evaluate the specific proposals contained in the EOs, a group of experts was convened from various sectors of the U.S. nuclear technology enterprise, under the auspices of the ANS External Affairs Committee, to compare the EOs against existing ANS board-approved Position Statements and to offer constructive input for subsequent implementation by the Trump administration.
The group’s findings and feedback, which were delivered by ANS CEO Craig Piercy to ANS President Lisa Marshall and the Board of Directors, are listed below, grouped by individual EO.
Rae-Joon Park, Kyoung-Ho Kang, Jong-Tae Kim, Ki-Young Lee, Sang-Baik Kim
Nuclear Technology | Volume 145 | Number 1 | January 2004 | Pages 102-114
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT04-A3463
Articles are hosted by Taylor and Francis Online.
Experimental and analytical studies on the penetration integrity of the reactor vessel have been performed to investigate the potential for reactor vessel failure during a severe accident in the Advanced Power Reactor 1400. Six tests have been performed to analyze the effects of the annulus water between the in-core instrumentation nozzle and the thimble tube, external vessel cooling, in-vessel pressure, melt mass, and melt flow for the maintenance of penetration integrity using alumina (Al2O3) melt as a simulant. The experimental results have been evaluated using the Lower head IntegraL Analysis computer Code (LILAC) and the Modified Bulk Freezing (MBF) model. The test results have shown that the water inside the annulus is very effective in the maintenance of the reactor vessel's penetration integrity because the water prevents the melt from ejection through penetration. The penetration in the no external vessel cooling case has more damage than that in the external vessel cooling case. An increase in in-vessel pressure from 1.0 to 1.5 MPa did not create penetration damage, but an increase in melt mass from 40 to 60 kg and melt flow due to the vessel geometry significantly increased the amount of penetration damage. The analytical results using the LILAC computer code and the MBF model are very similar to the experimental results for the ablation depth of the weld and the melt penetration distance through the annulus, respectively.