ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
William E. Kastenberg, Clyde D. Newman
Nuclear Technology | Volume 97 | Number 2 | February 1992 | Pages 241-251
Technical Paper | Economic | doi.org/10.13182/NT92-A34619
Articles are hosted by Taylor and Francis Online.
A cost/risk framework is developed to compare waste management alternatives such as partitioning and transmutation (P-T) to the currently open light water reactor fuel cycle in the United States in which spent fuel will be buried in a geologic repository. This framework has utility for developing economic values associated with long-term risk and was originally developed as part of a system study to define and determine the scope of the driving features of a P-T scheme involving nonconventional (pyrochemical) reprocessing and a fast-spectrum reactor fueled primarily with minor actinides. A potentially significant benefit is shown to be obtainable in the form of reduced long-term repository health risks; although the primary risk reduction is derived from the destruction or selective packaging and disposal of 99Tc and 129I, the modification of probabilities associated with site-specific repository features or highly uncertain future events could affect these results. The potential benefits are represented as a cost stream and appear as a large annual investment available for the development and implementation of P-T. Preliminary results suggest further studies in selected areas; a particularly significant near-term health risk benefit is expected to arise from reduced uranium mining and purification activities associated with the closure of the currently open fuel cycle. Although the cost/risk framework was originally developed to evaluate a specific waste management concept, similar analyses can be used to evaluate other waste management schemes as well. Reprocessing of spent fuel to recover specific problem isotopes is an obvious possibility but may lack the overall flexibility engendered in P-T to address the complete spectrum of public concerns.