ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Kazuo Haga, Yukinori Nishizawa, Toshio Watanabe, Shinya Miyahara, Yoshiaki Himeno
Nuclear Technology | Volume 97 | Number 2 | February 1992 | Pages 177-185
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34614
Articles are hosted by Taylor and Francis Online.
Two series of experiments have been conducted to obtain the gas-liquid equilibrium partition coefficient Kd and the nonequilibrium partition coefficient K’d of volatile fission products such as cesium, iodine, and tellurium between liquid sodium and the gas phase. In the equilibrium experiment, a sodium pool mixed with a fission product simulant was heated by an electric furnace, and the solvent of the vapors and aerosols trapped by filters was quantitatively analyzed. The results are as follows: 1. Cesium shows the largest Kd (20 to 100). 2. The Kd value of iodine scatters as widely as 0.02 to 0.5 at 450°C and 0.3 to 0.8 at 650°C. 3. The Kd values of cesium and iodine agree well with the theoretical ones reported by Castleman and Tang. 4. If sodium telluride, which is harder to vaporize than pure tellurium, is assumed, the measured Kd value of tellurium agrees with the theoretical.The nonequilibrium experiment in which the temperature dropped relatively sharply in the cover-gas region shows that K’d was not larger than Kd.