ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Hideaki Asaka, Yutaka Kukita, Taisuke Yonomoto, Kanji Tasaka
Nuclear Technology | Volume 96 | Number 2 | November 1991 | Pages 202-214
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT91-A34606
Articles are hosted by Taylor and Francis Online.
Three 0.5% hot-leg small-break loss-of-coolant accident experiments are conducted at the ROSA-IV Large-Scale Test Facility (LSTF), a volumetrically scaled full-height model of a pressurized water reactor. Three experiments simulate breaks located at the side, bottom, and top of the horizontal hot-leg piping to investigate the effects of break orientation on system thermal-hydraulic responses. Although the overall system responses in the three experiments are qualitatively the same, the break flow rate is affected significantly by the break orientation for most of the time preceding the initiation of core uncovering: The break flow rate is largest for the bottom break and smallest for the top break. The RELAP5/MOD2 code fails to predict the differences in break flow rate observed in the experiments. However, several modifications, based on separate-effect experiments, made particularly to the break flow calculation models enable this code to simulate the experimental results well.