ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Rainer Köster, Günter Rudolph
Nuclear Technology | Volume 96 | Number 2 | November 1991 | Pages 192-201
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A34605
Articles are hosted by Taylor and Francis Online.
The release of radionuclides from a waste form into an aqueous phase is often assessed using a source term that considers diffusion and/or congruent matrix dissolution as the rate-determining release mechanisms. As an alternative approach, an equilibrium concept is proposed here that can be applied under the condition that there is no appreciable exchange of fluid with the environment of the waste package / form after the water inflow into the near field for a long time. In this case, all reactions that may give rise to radionuclide release will be completed after a certain time and stable final conditions will be established, in which, for each radionuclide, chemical equilibria exist between the dissolved phase and the various coexisting solid phases. Thereafter, a release of radionuclides from the near field is possible only by escape of the aqueous phase into the environment. Release rate predictions on the basis of this concept are of particular interest for the long-lived radionuclides, especially the actinides. Current efforts are aimed at predicting equilibrium concentrations both in theoretical computations and in experimental measurements. Some results available from corrosion studies on cemented waste forms in salt brine are presented. For specimens doped with cesium, strontium, plutonium, or americium these results show that for each radionuclide a partition equilibrium exists between the corrosion products of cement and the surrounding salt brine, which keeps the concentration in solution at a low level.