ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Atomic Canyon partners with INL on AI benchmarks
As interest and investment grows around AI applications in nuclear power plants, there remains a gap in standardized benchmarks that can quantitatively compare and measure the quality and reliability of new products.
Nuclear-tailored AI developer Atomic Canyon is moving to fill that gap by entering into a new strategic partnership with Idaho National Laboratory to develop and release the “first comprehensive benchmark suite for evaluating retrieval-augmented generation (RAG) and large language models (LLMs) in nuclear applications.”
James L. Buelt, Richard K. Farnsworth
Nuclear Technology | Volume 96 | Number 2 | November 1991 | Pages 178-184
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A34603
Articles are hosted by Taylor and Francis Online.
In situ vitrification (ISV) converts contaminated soil into a glass and crystalline product by melting it with electrical energy. Pacific Northwest Laboratory, the developer of ISV, is currently conducting research to extend the technology to buried wastes and underground tanks for the U.S. Department of Energy. Since these types of wastes are anticipated to contain high concentrations of metals, new processing techniques are being developed and tested. In addition, the effects of metals on melt shape and on the solubility of heavy metals are being studied and tested. An electrode feeding technique has been developed and tested for processing high concentrations of metals. Instead of predrilling casings for electrode installation into the contaminated soil to be vitrified, electrode feeding allows the electrodes to be inserted as the vitrified soil melts downward. This concept has been successfully tested four times on engineering-scale equipment, which is th the capacity of large-scale equipment. Preliminary information has been collected on the influence of metals on melt shape and on the solubility of heavy metals in the molten soil. Test results indicate that metals could be used to achieve greater depths with ISV. Also, although the presence of metals can cause heavy metals to reduce and alloy with the molten metal pool at the bottom of the vitrified soil, the metallic phase passes all criteria for product durability. Additional and larger scale testing is needed to confirm these conclusions.