ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
S. E. Soliman, D. L. Youchison, A. J. Baratta, T. A. Balliett
Nuclear Technology | Volume 96 | Number 3 | December 1991 | Pages 346-352
Technical Paper | Material | doi.org/10.13182/NT91-A34595
Articles are hosted by Taylor and Francis Online.
Neutron effects on the mechanical properties and the microstructures of borated stainless steel are studied by irradiating three borated stainless steel batches to different radiation levels (from 1 × 1013 to 1 × 1017 n/cm2). Each batch includes samples varying in boron content from 0.25 to 2.01 wt° and manufactured by two different processes: a powder metallurgical and a conventional wrought technique, which meet the requirements of American Society of Testing and Materials Standard A-887 grades A and B, respectively. A total of 50 tensile specimens, 81 Charpy V-notch samples, and 17 metallographic specimens are used for this purpose. In general, the mechanical properties of samples manufactured by both the powder metallurgy and the wrought techniques show almost no change in mechanical properties with fluence. In addition, no evidence of helium effects are observed during the investigation. Further studies on helium formation in this material during irradiation are ongoing.