ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Atomic Canyon partners with INL on AI benchmarks
As interest and investment grows around AI applications in nuclear power plants, there remains a gap in standardized benchmarks that can quantitatively compare and measure the quality and reliability of new products.
Nuclear-tailored AI developer Atomic Canyon is moving to fill that gap by entering into a new strategic partnership with Idaho National Laboratory to develop and release the “first comprehensive benchmark suite for evaluating retrieval-augmented generation (RAG) and large language models (LLMs) in nuclear applications.”
Toru Ogawa, Kazuo Minato, Kousaku Fukuda, Masami Numata, Hideshi Miyanishi, Hajime Sekino, Hideo Matsushima, Tadaharu Itoh, Shigeo Kado, Ishio Takahashi
Nuclear Technology | Volume 96 | Number 3 | December 1991 | Pages 314-322
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT91-A34592
Articles are hosted by Taylor and Francis Online.
A model to predict the ultimate failure of TRISO-coated fuel particles under hypothetical core heatup events is proposed. Features of the model include the ability to treat the statistical variation of the number of coated fuel particles and to make a thermodynamic estimation of the stoichiometry of irradiated UO2 kernels and the equilibrium CO pressures. The model predictions agree well with the results of postirradiation heating tests. The thermal creep of pyrolytic carbon, however, must be taken into account to further improve the accuracy of the prediction.