ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
S. Velmurugan, S. V. Narasimhan, P. K. Mathur, K. S. Venkateswarlu
Nuclear Technology | Volume 96 | Number 3 | December 1991 | Pages 248-258
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-248
Articles are hosted by Taylor and Francis Online.
A dilute chemical decontamination formulation based on ethylene diamine tetraacetic acid, oxalic acid, and citric acid is evaluated for its efficacy in removing oxide layers in a pressurized heavy water reactor (PHWR). An ion exchange system that is specifically suited for fission product-dominated contamination in a PHWR is suggested for the reagent regeneration stage of the decontamination process. An attempt has been made to understand the redeposition behavior of various isotopes during the decontamination process. The polarographic method of identifying the species formed in the dissolution process is explained. Electrochemical measurements are employed to follow the course of oxide removal during the dissolution process. Scanning electron micrographs of metal coupons before and after the dissolution process exemplify the involvement of base metal in the formation of a ferrous oxalate layer. Material compatibility tests between the decontaminant and carbon steel, Monel-400, and Zircaloy-2 are reported.