ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Hugues W. Bonin, Christopher J. Thorp
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 337-348
Technical Paper | Radioisotopes and Isotope | doi.org/10.13182/NT91-A34582
Articles are hosted by Taylor and Francis Online.
A portable neutron gauge is designed to detect water ingression in flat roofs and to measure with good accuracy the moisture content in the roofing materials. The gauge consists of a small 252Cf neutron source inserted in a collimator head made of borated paraffin contained in a steel vessel. Neutron detection is performed with a boron trifluoride detector and the associated electronic counting equipment. Experimental testing, calibration, and assessment are done in the laboratory using full-scale models of typical, Canadian-built flat roofs. Several experiments are conducted to determine the sensitivity of the gauge for various controlled water densities in the roofing insulation materials and for a large selection of geometries for the source and the detector with respect to the roof surface. Two different source strengths are used: 1.2 (0.5) and 4.8 MBq (2.0 µg). The results indicate that as little as 2% (volume) water can be detected and that the water content can be determined with an average accuracy of 2.5%, even with the smaller of the two sources. A small neutron gauge can indeed be designed for roofing surveys, and only a few straightforward modifications are necessary to make the gauge used in the laboratory into an apparatus that can withstand the rigors of field usage.