ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
Woan Hwang, Ho Chun Suk, Won Mok Jae
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 314-324
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT91-A34580
Articles are hosted by Taylor and Francis Online.
A comprehensive fission gas release model is developed by considering the behavior of multiple bubble sizes on the fuel grain boundary in terms of relevant physical parameters. This model takes into account bubble migration and coalescence; critical bubble size, which depends on the thermal gradient on the grain boundary; and the lenticular shape of the bubbles. Booth’s classical diffusion theory is directly adopted in the modeling of intragranular fission gas behavior. To consider the bubble drift due to the thermal gradient, those bubbles that exceed the critical bubble size are assumed to be left on the grain boundary and to migrate along the thermal gradient until they encounter free voidages. Use of this model in the KAFEPA code, which predicts the absolute magnitude and the trend of the gas release depending on power history, gives better agreement with the experimental data than the predictions of the model in the ELESIM code, which considers only a single bubble size at the grain boundary.