ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Everett L. Redmond II, John M. Ryskamp
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 272-286
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A34577
Articles are hosted by Taylor and Francis Online.
Three-dimensional continuous-energy coupled neutron-gamma Monte Carlo models of the Advanced Neutron Source (ANS) final preconceptual and conceptual reference core designs have been developed using the Monte Carlo Neutron and Photon transport code (MCNP) Version 3b. These models contain the reactor core with control rods, the heavy water reflector tank with shutdown rods and some beam tubes, and the outer light water pool. Eighty homogenized fuel zones per fuel element are used to represent the radial and axial 235U fuel distribution. These models are the most sophisticated, physically accurate reactor physics models of the ANS currently available. The use of MCNP methods and applications to the ANS are demonstrated. Beam tube studies, coolant voiding studies, and many criticality studies have already been performed, as have studies with variance reduction techniques. In comparison with deterministic methods, MCNP proves superior in calculating the core multiplication factor and neutron fluxes in the reflector. The MCNP code offers the ANS project the capability of performing complicated reactor physics calculations not currently possible with most deterministic methods.