ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Constantine P. Tzanos, Dean R. Pedersen
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 253-265
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A34575
Articles are hosted by Taylor and Francis Online.
Two large-scale decay heat removal experiments are analyzed to support the validation of the thermal-hydraulic code COMMIX and the design of advanced liquid metal reactors (ALMRs). The experiments were performed in the reactor vessel auxiliary cooling system (RVACS) test facility, which provides a scaled simulation of the passive decay heat removal paths of a pool ALMR with the core simulated by electrically heated rods. The first experiment simulates a transient where decay heat is removed by the direct reactor auxiliary cooling system (DRACS) only. In the second experiment, heat is removed by both the DRACS and RVACS. These experiments are characterized by (a) three-dimensional in-pool sodium flows of very low velocity, driven by sodium density differences, (b) a significant pool thermal stratification, and (c) a complex heat sink. In the DRACS test, the thermal stratification occurs in the hot pool while the cold pool is nearly isothermal. When both systems are in operation the thermal stratification of the hot pool is drastically reduced while the upper third of the cold pool is significantly stratified. The COMMIX predictions for the sodium pool temperatures and the air outlet temperature of the RVACS are in good agreement with measurements.