ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Constantine P. Tzanos, Dean R. Pedersen
Nuclear Technology | Volume 95 | Number 3 | September 1991 | Pages 253-265
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A34575
Articles are hosted by Taylor and Francis Online.
Two large-scale decay heat removal experiments are analyzed to support the validation of the thermal-hydraulic code COMMIX and the design of advanced liquid metal reactors (ALMRs). The experiments were performed in the reactor vessel auxiliary cooling system (RVACS) test facility, which provides a scaled simulation of the passive decay heat removal paths of a pool ALMR with the core simulated by electrically heated rods. The first experiment simulates a transient where decay heat is removed by the direct reactor auxiliary cooling system (DRACS) only. In the second experiment, heat is removed by both the DRACS and RVACS. These experiments are characterized by (a) three-dimensional in-pool sodium flows of very low velocity, driven by sodium density differences, (b) a significant pool thermal stratification, and (c) a complex heat sink. In the DRACS test, the thermal stratification occurs in the hot pool while the cold pool is nearly isothermal. When both systems are in operation the thermal stratification of the hot pool is drastically reduced while the upper third of the cold pool is significantly stratified. The COMMIX predictions for the sodium pool temperatures and the air outlet temperature of the RVACS are in good agreement with measurements.