ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
David J. Kropaczek, Paul J. Turinsky
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 9-32
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT95-1-9
Articles are hosted by Taylor and Francis Online.
An in-core nuclear fuel management code for pressurized water reactor reload design has been developed that combines the stochastic optimization technique of simulated annealing with a computationally efficient core physics model based on second-order accurate generalized perturbation theory. The approach identifies the placements of feed fuel, exposed fuel with assembly orientations, and burnable poisons within the core lattice that optimize fuel cycle performance or thermal margin according to one of the following objectives: maximization of keff at a target end-of-cycle (EOC) burnup, minimization of the maximum radial power peaking over the cycle, or maximization of region average discharge burnup, and subject to constraints on radial power peaking, discharge burnup, and moderator temperature coefficient. Each objective examined for a typical cycle 2 reload indicated the existence of multiple optimal solutions. A comparison of the loading patterns obtained for the same fuel inventory shows that the marginal cost associated with achieving a 6.1% reduction in the maximum radial power peaking is equivalent to a 15.0% increase in fuel cycle costs for the specific core analyzed. Alternatively, an optimum loading pattern was found that increased the region average discharge burnup by 11.4% more than the one that maximizes the EOC keff, with the added expense of an increase in feed enrichment required to offset an otherwise 11.2% decrease in cycle length.