ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
David J. Kropaczek, Paul J. Turinsky
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 9-32
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT95-1-9
Articles are hosted by Taylor and Francis Online.
An in-core nuclear fuel management code for pressurized water reactor reload design has been developed that combines the stochastic optimization technique of simulated annealing with a computationally efficient core physics model based on second-order accurate generalized perturbation theory. The approach identifies the placements of feed fuel, exposed fuel with assembly orientations, and burnable poisons within the core lattice that optimize fuel cycle performance or thermal margin according to one of the following objectives: maximization of keff at a target end-of-cycle (EOC) burnup, minimization of the maximum radial power peaking over the cycle, or maximization of region average discharge burnup, and subject to constraints on radial power peaking, discharge burnup, and moderator temperature coefficient. Each objective examined for a typical cycle 2 reload indicated the existence of multiple optimal solutions. A comparison of the loading patterns obtained for the same fuel inventory shows that the marginal cost associated with achieving a 6.1% reduction in the maximum radial power peaking is equivalent to a 15.0% increase in fuel cycle costs for the specific core analyzed. Alternatively, an optimum loading pattern was found that increased the region average discharge burnup by 11.4% more than the one that maximizes the EOC keff, with the added expense of an increase in feed enrichment required to offset an otherwise 11.2% decrease in cycle length.