ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Hermann Würz
Nuclear Technology | Volume 95 | Number 2 | August 1991 | Pages 193-206
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT91-A34556
Articles are hosted by Taylor and Francis Online.
A method for nondestructive assay of spent light water reactor fuel assemblies based on a combination of active and passive neutron counting is presented. After geometrical optimization, the Fuel Assembly Monitoring System (FAMOS) is a rather simple system. It allows the burnup, initial enrichment, type of fuel (uranium or mixed oxide), and criticality of the spent-fuel assembly to be determined. The results of a characterization program with emphasis on boiling water reactor (BWR) fuel assemblies are discussed. Burnup-dependent neutron emission data for spent BWR fuel are now available. The effect of steam void on plutonium and curium buildup is demonstrated. Because of this effect, the axial measurement position is of importance for an accurate assay. If the measurement is done at the upper part of the BWR fuel assembly, the error in burnup remains below ±2 GWd/tonne U, and the initial enrichment can be determined with an accuracy of ±15%. This still allows a clear distinction between the different enrichment regions used for BWR fuel assemblies.