ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Dragan Mirkovic, David J. Diamond
Nuclear Technology | Volume 95 | Number 2 | August 1991 | Pages 162-174
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT91-A34554
Articles are hosted by Taylor and Francis Online.
An accident sequence in a boiling water reactor is studied in which there is a large reactivity insertion caused by the flushing of borated water from the core. This sequence can occur during an anticipated transient without scram after the injection of borated water from the standby liquid control system. The boron shuts down the power, but if there is a rapid depressurization of the vessel (e.g., because of the inadvertent actuation of the automatic depressurization system), large amounts of low-pressure, relatively cold, unborated water enters the vessel causing a rapid dilution and cooling. This study determines whether the reactivity addition caused by this flushing could lead to a power excursion that is sufficient to cause catastrophic fuel damage. Calculations are carried out using the RELAP5/MOD2 computer code under different assumptions regarding timing and availability of lowpressure pumps and with different reactivity coefficients. The results show that the fuel enthalpy rise is insufficient to cause catastrophic fuel damage, although less severe fuel damage might still be possible from overheating of the fuel cladding.