ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Myung-Sub Roh, Se-Woo Cheon, Soon-Heung Chang
Nuclear Technology | Volume 94 | Number 2 | May 1991 | Pages 270-278
Technical Paper | Advances in Reactor Accident Consequence Assessment / Reactor Operation | doi.org/10.13182/NT91-A34548
Articles are hosted by Taylor and Francis Online.
An artificial neural network—a data processing system with a number of simple highly interconnected processing elements in an architecture inspired by the structure of the human brain—is proposed for the prediction of thermal power in nuclear power plants (NPPs). The back-propagation network (BPN) algorithm is applied to develop models of signal processing. A number of case studies are performed with emphasis on the applicability of the network in a steady-state high power level. The studies reveal that the BPN algorithm can precisely predict the thermal power of an NPP. It also shows that the defected signals resulting from instrumentation problems, even when the signals comprising various patterns are noisy or incomplete, can be properly handled.