ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Jungsook Clara Wren, Chris J. Moore
Nuclear Technology | Volume 94 | Number 2 | May 1991 | Pages 242-251
Technical Paper | Advances in Reactor Accident Consequence Assessment / Material | doi.org/10.13182/NT91-A34545
Articles are hosted by Taylor and Francis Online.
Triethylenediamine (TEDA) impregnated charcoals, used in nuclear reactors to safeguard against the release of airborne radioiodine, show high efficiency under various reactor operation and accident conditions when they are new. However, during normal operation, charcoal filters are continuously degraded (or weathered) due to the adsorption of moisture and other air contaminants. The effect of weathering on the efficiency of charcoal for removing radioiodine is of great interest. The results of a study on the adsorption behavior of various contaminants {NO2, SO2, 2-butanone [methyl-ethyl ketone (MEK)], and NH3} on TEDA charcoal are presented. This study is an attempt to characterize and quantify the weathering process of TEDA charcoal by these contaminants. The adsorption and desorption of characteristics of these contaminants range from completely irreversible (NO2) to completely reversible (NH3). The effect of adsorbed water (or humidity) on adsorption is different for each contaminant. Adsorbed water increases the adsorption rate and capacity of TEDA charcoal for NO2, while it does not significantly change those for SO2. However, it appears that SO2 is adsorbed as H2SO4 on the wet charcoal. Adsorbed water slightly reduces the adsorption capacity of the charcoal for MEK, but does not affect the adsorption of NH3.