ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Simon C. P. Wang, Clayton Collins, Samim Anghaie, E. Dow Whitney
Nuclear Technology | Volume 93 | Number 3 | March 1991 | Pages 399-411
Technical Paper | Material | doi.org/10.13182/NT91-A34534
Articles are hosted by Taylor and Francis Online.
Uranium fluoride gases are proposed as primary candidate fuels for ultrahigh-temperature gas core or vapor core reactor systems for a variety of space power applications. In these systems, the peak temperature of the fissioning gas can be as high as 5000 K and the inner wall temperature of the reactor cavity is within the range of 1000 to 2000 K. Two kinds of alumina, sapphire and polycrystal alpha alumina, and CaO partially stabilized zirconia are exposed to uranium hexafluoride gas in temperatures ranging from 973 to 1473 K and from 873 to 1073 K, respectively. Exposure tests are conducted in a UF6 flowing loop with an alumina reaction tube housed in a 1500 K electric-heated furnace.The reaction rates are measured using a discontinuous gravimetric method. The morphology of the exposed surfaces was observed by optical microscopy and scanning electron microscopy, and the reaction products were identified by X-ray diffraction and energy dispersive X-ray spectroscopy. Results indicate that alumina provides a relatively higher service temperature in UF6 environment. However, due to the highly reactive and chemically aggressive nature of UF6 at high temperatures, the maximum service temperature of alumina for a UF6-based gas core reactor is limited to 1273 K. Zirconia at temperatures above 973 K is not compatible with UF6.