ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Fatma Yilmaz, Yassin A. Hassan, Douglas L. Porter, Oleg Romanenko
Nuclear Technology | Volume 144 | Number 3 | December 2003 | Pages 369-378
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT03-A3451
Articles are hosted by Taylor and Francis Online.
Material property data concerning the structural materials of EBR-II and BN350 have been compiled. The swelling formulations developed for Russian and American austenitic steels before reaching steady-state conditions are compared, and possible applications of the formulation for Russian steels to some compositionally similar American steels are discussed. The effects of slight composition and metallurgical condition differences on swelling can be used to explain the possible differences between the American steel data and the predictions for the corresponding Russian steel.Ultimate tensile strength and total elongation changes in Russian austenitic steels are correlated with swelling over a large swelling range (0 to 15%) and reveals total loss of ductility and strength as the amount of swelling reaches high values.Since austenitic steel is the main structural material of fast and light water reactors (LWRs) these findings can be applied to the LWR systems considering exposure temperature, dose rate, and neutron energy spectrum differences.